metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2-Amino-3,5-dimethylbenzenesulfonato- κN)bis(3-methylisoquinoline- κN)silver(I)

Yu-Jie Li,^a Shao-Ping Shangguan^b and Xian-Wu Dong^a*

^aJilin Agriculture Science and Technology College, People's Republic of China, and ^bSchool of Heilongjiang Agricultural College of Vocational Technology, People's Republic of China

Correspondence e-mail: hljwuhua@163.com

Received 19 May 2007; accepted 23 May 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.006 Å; R factor = 0.036; wR factor = 0.116; data-to-parameter ratio = 16.2.

The title compound, $[Ag(C_8H_{10}NO_3S)(C_{10}H_9N)_2]$, has a mononuclear structure in which the Ag⁺ cation is threecoordinated by two N atoms from two different 3-methylisoquinoline molecules and one N atom from a 2-amino-3,5dimethylbenzenesulfonate anion in a highly distorted trigonal-planar AgN₃ arrangement.

Related literature

For the structure of the related compound, Ag(L)(bipy), where L = 2-amino-3,5-dimethylbenzenesulfonate and bipy = 2,2'-bipyridine, see Liu et al. (2006).

Experimental

Crystal data

$[Ag(C_8H_{10}NO_3S)(C_{10}H_9N)_2]$	$V = 2600.4 (9) \text{ Å}^3$
$M_r = 594.47$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 11.910 (2) Å	$\mu = 0.89 \text{ mm}^{-1}$
b = 11.199 (2) Å	T = 292 (2) K
c = 19.507 (4) Å	$0.24 \times 0.23 \times 0.11$
$\beta = 92.05 \ (3)^{\circ}$	

Data collection

Rigaku R-AXIS RAPID CCD diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.884, \ \bar{T}_{\max} = 0.908$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	329 parameters
$wR(F^2) = 0.116$	H-atom parameters constrained
S = 0.91	$\Delta \rho_{\rm max} = 0.42 \text{ e } \text{\AA}^{-3}$
5336 reflections	$\Delta \rho_{\rm min} = -0.82 \text{ e } \text{\AA}^{-3}$

mm

20026 measured reflections

 $R_{\rm int} = 0.050$

5336 independent reflections

2764 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Ag1-N1	2.248 (3)	Ag1-N3	2.308 (3)
Ag1-N2	2.290 (3)		
N1-Ag1-N2	122.95 (12)	N2-Ag1-N3	114.36 (11)
N1-Ag1-N3	121.97 (12)	-	. ,

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

We thank the Jilin Agriculture Science and Technology College (China) for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2426).

References

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Liu, H.-Y., Wu, H. & Ma, J.-F. (2006). Acta Cryst. E62, m325-m326.

Rigaku (1998). PROCESS-AUTO, Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m1806 [doi:10.1107/S1600536807025275]

(2-Amino-3,5-dimethylbenzenesulfonato-KN)bis(3-methylisoquinoline-KN)silver(I)

Y.-J. Li, S.-P. Shangguan and X.-W. Dong

Comment

In this paper, the structure of the title compound, (I) (Fig. 1), containing two 3-methylisoquinoline molecules and 2-amino-3,5-dimethylbenzenesulfonate (L) anion is described.

In (I), two 3-methylisoquinoline molecules and one *L* anion are coordinated to the metal, resulting in a highly distorted trigonal planar coordination geometry for Ag (Table 1). Atoms Ag1, N1, N2 and N3 are almost coplanar and the bond-angle sum about Ag is 359.36° . The Ag—N_L distances are longer than the Ag—N_{3-methylisoquinoline} distance. The distances are similar to the equivalent values in related compounds (Liu *et al.*, 2006). In (I), the coordinate to the Ag ion. The dihedral angle between the two quinoline rings of the different two coordinated 3-methylisoquinoline molecules is 96.3° .

Experimental

An aqueous solution (10 ml) of 2-amino-3,5-dimethylbenzenesulfonic acid (0.101 g, 0.5 mmol) was added to solid Ag_2CO_3 (0.069 g, 0.25 mmol) and stirred for several minutes until no further CO_2 was given off; 3-methylisoquinoline (0.0715 g, 0.5 mmol) in methanol (5 ml) was then added and a white precipitate formed. The precipitate was dissolved by dropwise addition of an aqueous solution of NH₃ (14 *M*). Colourless prisms of (I) were obtained by evaporation of the solution for several days at room temperature.

Refinement

All H atoms on C atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and $U_{iso}(H)$ = 1.2 $U_{eq}(C)$ or 1.5 $U_{eq}(methyl C)$.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids. All H atoms are omitted for clarty.

(2-Amino-3,5-dimethylbenzenesulfonato-κN)bis(3-methylisoquinoline- κN)silver(I)

Crystal data [Ag(C₈H₁₀NO₃S)(C₁₀H₉N)₂]

 $F_{000} = 1216$

$M_r = 594.47$	$D_{\rm x} = 1.518 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 9129 reflections
a = 11.910 (2) Å	$\theta = 2.0-27.5^{\circ}$
<i>b</i> = 11.199 (2) Å	$\mu = 0.89 \text{ mm}^{-1}$
c = 19.507 (4) Å	T = 292 (2) K
$\beta = 92.05 \ (3)^{\circ}$	Prism, colorless
$V = 2600.4 (9) \text{ Å}^3$	$0.24\times0.23\times0.11~mm$
<i>Z</i> = 4	

Data collection

Rigaku R-AXIS RAPID CCD diffractometer	5336 independent reflections
Radiation source: fine-focus sealed tube	2764 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.050$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 292(2) K	$\theta_{\min} = 2.0^{\circ}$
ω scans	$h = -15 \rightarrow 15$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -13 \rightarrow 14$
$T_{\min} = 0.884, \ T_{\max} = 0.908$	$l = -25 \rightarrow 25$
20026 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.036$	H-atom parameters constrained
$wR(F^2) = 0.116$	$w = 1/[\sigma^2(F_o^2) + (0.0638P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.91	$(\Delta/\sigma)_{\rm max} < 0.001$
5336 reflections	$\Delta \rho_{max} = 0.42 \text{ e} \text{ Å}^{-3}$
329 parameters	$\Delta \rho_{min} = -0.82 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 .

factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ag1	0.42331 (3)	0.17081 (3)	0.26819 (2)	0.07452 (17)
C1	0.3582 (3)	0.5198 (3)	0.24067 (18)	0.0391 (8)
C2	0.3483 (3)	0.4187 (3)	0.1985 (2)	0.0414 (9)
C3	0.3905 (3)	0.4228 (3)	0.1326 (2)	0.0461 (9)
C4	0.4351 (3)	0.5290 (3)	0.1093 (2)	0.0520 (10)
H4	0.4612	0.5320	0.0650	0.062*
C5	0.4422 (3)	0.6309 (3)	0.1495 (2)	0.0511 (10)
C6	0.4057 (3)	0.6233 (3)	0.2151 (2)	0.0470 (9)
Н6	0.4129	0.6896	0.2436	0.056*
C7	0.3857 (4)	0.3133 (3)	0.0872 (2)	0.0614 (11)
H7A	0.4235	0.2482	0.1102	0.092*
H7B	0.4220	0.3301	0.0451	0.092*
H7C	0.3088	0.2920	0.0773	0.092*
C8	0.4894 (4)	0.7462 (4)	0.1215 (3)	0.0763 (14)
H8A	0.4412	0.7748	0.0846	0.114*
H8B	0.5631	0.7318	0.1049	0.114*
H8C	0.4939	0.8050	0.1574	0.114*
С9	0.6794 (5)	0.2767 (5)	0.2884 (3)	0.1042 (19)
H9A	0.6424	0.2412	0.3263	0.156*
H9B	0.6383	0.3460	0.2730	0.156*
Н9С	0.7543	0.2997	0.3027	0.156*
C10	0.6844 (4)	0.1878 (4)	0.2307 (2)	0.0629 (12)
C11	0.7789 (4)	0.1545 (4)	0.2013 (3)	0.0698 (13)
H11	0.8474	0.1808	0.2200	0.084*
C12	0.7782 (4)	0.0813 (4)	0.1434 (3)	0.0643 (12)
C13	0.8747 (4)	0.0459 (5)	0.1080 (4)	0.0984 (19)
H13	0.9457	0.0695	0.1241	0.118*
C14	0.8638 (6)	-0.0210 (6)	0.0518 (4)	0.126 (3)
H14	0.9285	-0.0447	0.0302	0.151*
C15	0.7613 (7)	-0.0569 (5)	0.0239 (3)	0.109 (2)
H15	0.7574	-0.1014	-0.0163	0.130*
C16	0.6657 (4)	-0.0263 (4)	0.0560 (3)	0.0763 (14)
H16	0.5960	-0.0502	0.0380	0.092*
C17	0.6731 (3)	0.0414 (3)	0.1164 (2)	0.0523 (10)
C18	0.5794 (3)	0.0753 (3)	0.1530 (2)	0.0537 (10)
H18	0.5098	0.0459	0.1379	0.064*
C20	0.4270 (3)	-0.0291 (3)	0.3849 (2)	0.0481 (9)
C21	0.4904 (4)	-0.0917 (4)	0.3305 (2)	0.0635 (12)
H21A	0.4494	-0.0855	0.2874	0.095*
H21B	0.4995	-0.1743	0.3425	0.095*
H21C	0.5629	-0.0553	0.3267	0.095*
C22	0.3471 (4)	0.1490 (3)	0.4187 (2)	0.0559 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

0.3320	0.2292	0.4103	0.067*
0.3106 (3)	0.0997 (3)	0.4802 (2)	0.0498 (10)
0.2469 (4)	0.1652 (4)	0.5271 (2)	0.0677 (12)
0.2317	0.2456	0.5191	0.081*
0.2085 (4)	0.1114 (5)	0.5832 (3)	0.0791 (14)
0.1654	0.1543	0.6135	0.095*
0.2328 (4)	-0.0089 (5)	0.5963 (2)	0.0806 (15)
0.2062	-0.0445	0.6356	0.097*
0.2939 (4)	-0.0739 (4)	0.5532 (2)	0.0705 (13)
0.3092	-0.1536	0.5631	0.085*
0.3351 (3)	-0.0214 (3)	0.4927 (2)	0.0515 (10)
0.3956 (3)	-0.0829 (3)	0.4434 (2)	0.0550 (11)
0.4145	-0.1625	0.4510	0.066*
0.4015 (3)	0.0891 (3)	0.37210 (18)	0.0530 (8)
0.5818 (3)	0.1448 (3)	0.20680 (19)	0.0561 (9)
0.3002 (3)	0.3120 (2)	0.22318 (17)	0.0499 (8)
0.2599	0.2781	0.1885	0.060*
0.2519	0.3316	0.2558	0.060*
0.3372 (2)	0.6325 (2)	0.35541 (14)	0.0552 (7)
0.1868 (2)	0.5006 (3)	0.31586 (15)	0.0659 (8)
0.3625 (3)	0.4186 (2)	0.35988 (15)	0.0671 (8)
0.30740 (8)	0.51752 (8)	0.32519 (5)	0.0474 (3)
	0.3320 0.3106 (3) 0.2469 (4) 0.2317 0.2085 (4) 0.1654 0.2328 (4) 0.2062 0.2939 (4) 0.3092 0.3351 (3) 0.3956 (3) 0.4145 0.4015 (3) 0.5818 (3) 0.3002 (3) 0.2599 0.2519 0.3372 (2) 0.1868 (2) 0.3625 (3) 0.30740 (8)	0.3320 0.2292 $0.3106 (3)$ $0.0997 (3)$ $0.2469 (4)$ $0.1652 (4)$ 0.2317 0.2456 $0.2085 (4)$ $0.1114 (5)$ 0.1654 0.1543 $0.2328 (4)$ $-0.0089 (5)$ 0.2062 -0.0445 $0.2939 (4)$ $-0.0739 (4)$ 0.3092 -0.1536 $0.3351 (3)$ $-0.0214 (3)$ 0.4145 $-0.0829 (3)$ 0.4145 -0.1625 $0.4015 (3)$ $0.3120 (2)$ 0.2599 0.2781 0.2519 0.3316 $0.3372 (2)$ $0.6325 (2)$ $0.1868 (2)$ $0.5006 (3)$ $0.30740 (8)$ $0.51752 (8)$	0.3320 0.2292 0.4103 $0.3106 (3)$ $0.0997 (3)$ $0.4802 (2)$ $0.2469 (4)$ $0.1652 (4)$ $0.5271 (2)$ 0.2317 0.2456 0.5191 $0.2085 (4)$ $0.1114 (5)$ $0.5832 (3)$ 0.1654 0.1543 0.6135 $0.2328 (4)$ $-0.0089 (5)$ $0.5963 (2)$ 0.2062 -0.0445 0.6356 $0.2939 (4)$ $-0.0739 (4)$ $0.5532 (2)$ 0.3092 -0.1536 0.5631 $0.3351 (3)$ $-0.0214 (3)$ $0.4927 (2)$ $0.3956 (3)$ $-0.0829 (3)$ $0.4434 (2)$ 0.4145 -0.1625 0.4510 $0.4015 (3)$ $0.3891 (3)$ $0.37210 (18)$ $0.5818 (3)$ $0.1448 (3)$ $0.20680 (19)$ $0.3002 (3)$ $0.3120 (2)$ $0.22318 (17)$ 0.2599 0.2781 0.1885 0.2519 0.3316 0.2558 $0.3372 (2)$ $0.6325 (2)$ $0.35541 (14)$ $0.1868 (2)$ $0.5006 (3)$ $0.31586 (15)$ $0.30740 (8)$ $0.51752 (8)$ $0.32519 (5)$

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.0839 (3)	0.0711 (3)	0.0698 (3)	0.01131 (19)	0.01920 (19)	0.02028 (19)
C1	0.039 (2)	0.0351 (19)	0.043 (2)	0.0060 (17)	0.0023 (16)	0.0016 (16)
C2	0.0348 (19)	0.037 (2)	0.052 (3)	0.0032 (17)	0.0011 (17)	0.0043 (17)
C3	0.045 (2)	0.046 (2)	0.047 (2)	0.0069 (18)	-0.0003 (18)	-0.0002 (18)
C4	0.054 (2)	0.053 (2)	0.050 (3)	0.005 (2)	0.0113 (19)	0.0100 (19)
C5	0.055 (2)	0.041 (2)	0.058 (3)	0.0003 (19)	0.011 (2)	0.0087 (18)
C6	0.048 (2)	0.0374 (19)	0.056 (3)	-0.0028 (18)	0.0034 (19)	-0.0006 (17)
C7	0.079 (3)	0.052 (2)	0.053 (3)	0.007 (2)	0.007 (2)	-0.005 (2)
C8	0.091 (3)	0.055 (3)	0.085 (4)	-0.013 (3)	0.027 (3)	0.015 (2)
С9	0.146 (5)	0.103 (4)	0.063 (4)	-0.022 (4)	-0.003 (4)	-0.013 (3)
C10	0.078 (3)	0.066 (3)	0.045 (3)	-0.010 (2)	-0.004 (2)	0.013 (2)
C11	0.058 (3)	0.079 (3)	0.071 (4)	-0.016 (2)	-0.013 (3)	0.016 (3)
C12	0.053 (3)	0.063 (3)	0.078 (4)	-0.002 (2)	0.014 (2)	0.022 (2)
C13	0.068 (4)	0.089 (4)	0.140 (6)	-0.005 (3)	0.036 (4)	0.020 (4)
C14	0.119 (6)	0.099 (5)	0.167 (8)	-0.009 (4)	0.098 (6)	-0.004 (5)
C15	0.153 (6)	0.077 (4)	0.100 (5)	-0.026 (4)	0.068 (5)	-0.014 (3)
C16	0.097 (4)	0.062 (3)	0.072 (4)	-0.018 (3)	0.019 (3)	0.003 (2)
C17	0.056 (3)	0.047 (2)	0.054 (3)	-0.006 (2)	0.008 (2)	0.0132 (19)
C18	0.050 (2)	0.050 (2)	0.061 (3)	-0.007 (2)	0.001 (2)	0.014 (2)
C20	0.049 (2)	0.042 (2)	0.052 (3)	-0.0017 (18)	-0.0103 (19)	-0.0013 (18)
C21	0.069 (3)	0.057 (3)	0.065 (3)	0.004 (2)	0.004 (2)	-0.010 (2)
C22	0.068 (3)	0.037 (2)	0.062 (3)	0.003 (2)	0.002 (2)	-0.0028 (19)

C23	0.058 (2)	0.044 (2)	0.048 (3)	-0.0058 (19)	-0.004 (2)	-0.0032 (18)
C24	0.082 (3)	0.060 (3)	0.061 (3)	-0.002 (2)	0.002 (3)	-0.016 (2)
C25	0.082 (3)	0.097 (4)	0.058 (3)	-0.011 (3)	0.010 (3)	-0.026 (3)
C26	0.095 (4)	0.099 (4)	0.048 (3)	-0.031 (3)	0.012 (3)	-0.007 (3)
C27	0.088 (3)	0.066 (3)	0.056 (3)	-0.019 (3)	-0.003 (3)	0.012 (2)
C28	0.056 (2)	0.050(2)	0.048 (3)	-0.011 (2)	-0.009 (2)	0.0019 (19)
C19	0.065 (3)	0.038 (2)	0.061 (3)	-0.001 (2)	-0.009 (2)	0.0051 (19)
N1	0.059 (2)	0.0428 (19)	0.057 (2)	-0.0004 (16)	0.0009 (17)	0.0055 (16)
N2	0.061 (2)	0.055 (2)	0.052 (2)	-0.0063 (17)	0.0078 (18)	0.0112 (17)
N3	0.0541 (19)	0.0354 (17)	0.061 (2)	-0.0047 (15)	0.0097 (16)	-0.0041 (14)
O2	0.0776 (18)	0.0400 (13)	0.0480 (17)	0.0021 (13)	0.0024 (14)	-0.0054 (12)
01	0.0560 (18)	0.0773 (19)	0.065 (2)	-0.0087 (15)	0.0135 (14)	-0.0032 (16)
O3	0.101 (2)	0.0428 (15)	0.0568 (19)	0.0097 (15)	-0.0058 (17)	0.0105 (13)
S1	0.0577 (6)	0.0395 (5)	0.0451 (6)	0.0009 (5)	0.0034 (5)	0.0025 (4)

Geometric parameters (Å, °)

Ag1—N1	2.248 (3)	C14—H14	0.9300
Ag1—N2	2.290 (3)	C15—C16	1.363 (7)
Ag1—N3	2.308 (3)	C15—H15	0.9300
C1—C6	1.390 (5)	C16—C17	1.401 (6)
C1—C2	1.402 (5)	C16—H16	0.9300
C1—S1	1.777 (4)	C17—C18	1.398 (5)
C2—C3	1.397 (5)	C18—N2	1.306 (5)
C2—N3	1.417 (4)	C18—H18	0.9300
C3—C4	1.386 (5)	C20—C19	1.354 (5)
С3—С7	1.513 (5)	C20—N1	1.378 (5)
C4—C5	1.385 (5)	C20—C21	1.500 (5)
C4—H4	0.9300	C21—H21A	0.9600
C5—C6	1.369 (5)	C21—H21B	0.9600
С5—С8	1.518 (5)	C21—H21C	0.9600
С6—Н6	0.9300	C22—N1	1.318 (5)
С7—Н7А	0.9600	C22—C23	1.404 (5)
С7—Н7В	0.9600	C22—H22	0.9300
С7—Н7С	0.9600	C23—C28	1.406 (5)
C8—H8A	0.9600	C23—C24	1.414 (6)
C8—H8B	0.9600	C24—C25	1.344 (6)
C8—H8C	0.9600	C24—H24	0.9300
C9—C10	1.505 (6)	C25—C26	1.399 (7)
С9—Н9А	0.9600	C25—H25	0.9300
С9—Н9В	0.9600	C26—C27	1.346 (6)
С9—Н9С	0.9600	C26—H26	0.9300
C10-C11	1.336 (6)	C27—C28	1.422 (6)
C10—N2	1.379 (5)	C27—H27	0.9300
C11—C12	1.396 (7)	C28—C19	1.403 (6)
C11—H11	0.9300	C19—H29	0.9300
C12—C17	1.413 (6)	N3—H3A	0.9000
C12—C13	1.418 (7)	N3—H3B	0.9000
C13—C14	1.331 (9)	O2—S1	1.455 (3)

С13—Н13	0.9300	O1—S1	1.454 (3)
C14—C15	1.378 (9)	O3—S1	1.443 (3)
N1—Ag1—N2	122.95 (12)	C17—C16—H16	120.2
N1—Ag1—N3	121.97 (12)	C18—C17—C16	123.3 (4)
N2—Ag1—N3	114.36 (11)	C18—C17—C12	115.9 (4)
C6—C1—C2	119.3 (3)	C16—C17—C12	120.8 (4)
C6—C1—S1	120.1 (3)	N2-C18-C17	125.2 (4)
C2—C1—S1	120.6 (3)	N2—C18—H18	117.4
C3—C2—C1	119.2 (3)	C17—C18—H18	117.4
C3—C2—N3	120.3 (3)	C19—C20—N1	121.0 (4)
C1—C2—N3	120.5 (3)	C19—C20—C21	123.4 (4)
C4—C3—C2	119.0 (3)	N1—C20—C21	115.7 (4)
C4—C3—C7	120.7 (4)	C20-C21-H21A	109.5
C2—C3—C7	120.3 (3)	C20—C21—H21B	109.5
C5—C4—C3	122.5 (4)	H21A—C21—H21B	109.5
С5—С4—Н4	118.7	C20-C21-H21C	109.5
С3—С4—Н4	118.7	H21A—C21—H21C	109.5
C6—C5—C4	117.5 (4)	H21B—C21—H21C	109.5
C6—C5—C8	121.6 (4)	N1—C22—C23	124.3 (3)
C4—C5—C8	120.9 (4)	N1—C22—H22	117.8
C5—C6—C1	122.3 (4)	C23—C22—H22	117.8
С5—С6—Н6	118.8	C22—C23—C28	117.3 (4)
С1—С6—Н6	118.8	C22—C23—C24	122.6 (4)
С3—С7—Н7А	109.5	C28—C23—C24	120.1 (4)
С3—С7—Н7В	109.5	C25—C24—C23	120.0 (4)
H7A—C7—H7B	109.5	C25—C24—H24	120.0
С3—С7—Н7С	109.5	C23—C24—H24	120.0
H7A—C7—H7C	109.5	C24—C25—C26	120.4 (4)
H7B—C7—H7C	109.5	C24—C25—H25	119.8
С5—С8—Н8А	109.5	С26—С25—Н25	119.8
C5—C8—H8B	109.5	C27—C26—C25	121.3 (5)
H8A—C8—H8B	109.5	C27—C26—H26	119.3
С5—С8—Н8С	109.5	C25—C26—H26	119.3
H8A—C8—H8C	109.5	C26—C27—C28	120.4 (4)
H8B—C8—H8C	109.5	С26—С27—Н27	119.8
С10—С9—Н9А	109.5	С28—С27—Н27	119.8
С10—С9—Н9В	109.5	C19—C28—C23	117.6 (4)
Н9А—С9—Н9В	109.5	C19—C28—C27	124.6 (4)
С10—С9—Н9С	109.5	C23—C28—C27	117.8 (4)
Н9А—С9—Н9С	109.5	C20—C19—C28	121.6 (4)
Н9В—С9—Н9С	109.5	С20—С19—Н29	119.2
C11—C10—N2	120.5 (4)	С28—С19—Н29	119.2
C11—C10—C9	124.3 (5)	C22—N1—C20	118.3 (3)
N2—C10—C9	115.2 (5)	C22—N1—Ag1	119.3 (3)
C10—C11—C12	122.1 (4)	C20—N1—Ag1	121.5 (3)
C10—C11—H11	118.9	C18—N2—C10	118.3 (4)
C12—C11—H11	118.9	C18—N2—Ag1	120.1 (3)
C11—C12—C17	117.8 (4)	C10—N2—Ag1	121.0 (3)
C11—C12—C13	125.2 (5)	C2—N3—Ag1	116.6 (2)

C17 - C12 - C13	117.0 (5)	C2—N3—H3A	108.1
C14-C13-C12	120 1 (6)	Ag1—N3—H3A	108.1
C14—C13—H13	119.9	$C_2 = N_3 = H_3 B$	108.1
C12—C13—H13	119.9	Ag1_N3_H3B	108.1
C13 - C14 - C15	123 2 (6)	$H_{3A} = N_{3} = H_{3B}$	107.3
C13—C14—H14	118.4	03 = 81 = 01	112.91 (18)
C15—C14—H14	118.4	03 - 81 - 02	112.90 (17)
C16—C15—C14	119.3 (6)	01-\$1-02	113.05 (17)
C16—C15—H15	120.4	03 - 81 - C1	106.36 (17)
С14—С15—Н15	120.4	01—S1—C1	104.68 (17)
C15—C16—C17	119.6 (5)	02—S1—C1	106.09 (16)
C15—C16—H16	120.2		
C_{6} C_{1} C_{2} C_{3}	2 5 (5)	C^{22} C^{23} C^{28} C^{10}	1.0(5)
$c_{0} = c_{1} = c_{2} = c_{3}$	-1701(3)	$C_{22} = C_{23} = C_{26} = C_{19}$	1.0(3) 178 1 (4)
$S_1 - C_1 - C_2 - C_3$	-19.0(3)	$C_{24} = C_{23} = C_{26} = C_{17}$	-177.0(4)
$C_0 = C_1 = C_2 = N_3$	-16(4)	$C_{22} - C_{23} - C_{26} - C_{27}$	-1/7.0(4)
SI = CI = C2 = N3	-1.0(4)	$C_{24} = C_{23} = C_{28} = C_{27}$	0.1(0)
$C_1 = C_2 = C_3 = C_4$	-3.0(3)	$C_{20} = C_{27} = C_{28} = C_{19}$	-1/7.4(4)
$N_{3} = C_{2} = C_{3} = C_{4}$	1/8.7(3)	$C_{20} - C_{27} - C_{28} - C_{25}$	0.5(0)
$C_1 = C_2 = C_3 = C_7$	1/7.5(3)	N1 = C20 = C19 = C28	0.0(0)
$N_3 = C_2 = C_3 = C_7$	-0.5(5)	$C_{21} = C_{20} = C_{19} = C_{28}$	-1/9.5(4)
$C_2 = C_3 = C_4 = C_5$	1.8 (0)	$C_{23} = C_{28} = C_{19} = C_{20}$	-1.0(0)
$C_{1} = C_{3} = C_{4} = C_{5}$	-1/9.5(4)	$C_2/-C_28-C_19-C_20$	1/0.2 (4)
$C_{3} = C_{4} = C_{5} = C_{6}$	1.5 (0)	$C_{23} = C_{22} = N_1 = C_{20}$	-1.7(0)
$C_{3} = C_{4} = C_{3} = C_{8}$	-1/8.8(4)	C_{23} — C_{22} — N_1 —Agi	107.9(3)
C4—C5—C6—C1	-2.9(6)	C19 - C20 - N1 - C22	1.0 (6)
$C_{8} = C_{5} = C_{6} = C_{1}$	1//.4 (4)	$C_{21} = C_{20} = N_1 = C_{22}$	-1/9.1(4)
$C_2 = C_1 = C_6 = C_5$	0.9 (6)	C19 - C20 - N1 - Ag1	-168.4(3)
SICIC6C5	-1/7.5(3)	C21—C20—N1—Agi	11.5 (4)
N2-C10-C11-C12	3.8 (7)	N2—Ag1—N1—C22	144.2 (3)
C9—C10—C11—C12	-1/3.2(4)	N3—Ag1—N1—C22	-25.6(3)
	-0.6 (7)	N2—Ag1—N1—C20	-46.5 (3)
C10-C11-C12-C13	1/7.6 (5)	N3—Ag1—N1—C20	143.7 (3)
C11—C12—C13—C14	-177.7 (5)	C17—C18—N2—C10	-1.0 (6)
C17—C12—C13—C14	0.5 (8)	C17—C18—N2—Ag1	-172.1 (3)
C12-C13-C14-C15	1.6 (10)	C11—C10—N2—C18	-3.0 (6)
C13 - C14 - C15 - C16	-2.1(10)	C9—C10—N2—C18	174.2 (4)
C14—C15—C16—C17	0.3 (8)	CII—CI0—N2—Agl	168.0 (3)
C15-C16-C17-C18	-179.1 (4)	C9—C10—N2—Ag1	-14.7 (5)
C15—C16—C17—C12	1.8 (7)	N1—Ag1—N2—C18	106.7 (3)
C11—C12—C17—C18	-3.0(6)	N3—Ag1—N2—C18	-82.8 (3)
C13-C12-C17-C18	178.7 (4)	NI—AgI—N2—C10	-64.1 (3)
C11—C12—C17—C16	176.1 (4)	N3—Ag1—N2—C10	106.4 (3)
C13-C12-C17-C16	-2.2 (6)	C3—C2—N3—Ag1	82.7 (4)
C16—C17—C18—N2	-175.2(4)	C1—C2—N3—Ag1	-94.8 (3)
C12—C17—C18—N2	3.9 (6)	NI—Agl—N3—C2	128.7 (3)
N1—C22—C23—C28	0.7 (6)	N2—Ag1—N3—C2	-41.9 (3)
N1—C22—C23—C24	-176.3 (4)	C6—C1—S1—O3	-125.5 (3)
C22—C23—C24—C25	176.0 (4)	C2—C1—S1—O3	56.1 (3)
C28—C23—C24—C25	-0.9 (6)	C6—C1—S1—O1	114.7 (3)

C23—C24—C25—C26	1.2 (7)	C2—C1—S1—O1	-63.7 (3)
C24—C25—C26—C27	-0.7 (8)	C6—C1—S1—O2	-5.1 (3)
C25—C26—C27—C28	-0.2 (7)	C2-C1-S1-O2	176.5 (3)

Fig. 1